Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Biol Chem ; 298(10): 102469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087837

RESUMO

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Assuntos
Aciltransferases , Cisteína , Descoberta de Drogas , Humanos , Acilação/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Cisteína/metabolismo , Lipoilação , Dedos de Zinco
2.
Nature ; 607(7920): 816-822, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831507

RESUMO

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Assuntos
Aciltransferases , Proteínas de Membrana , Via de Sinalização Wnt , Acilação/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Antineoplásicos , Sítios de Ligação , Coenzima A/metabolismo , Microscopia Crioeletrônica , Histidina , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Palmitoil Coenzima A , Pirazinas/farmacologia , Piridinas/farmacologia , Serina , Especificidade por Substrato , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A
3.
ACS Chem Biol ; 16(8): 1546-1556, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34309372

RESUMO

Protein S-acylation is a dynamic lipid post-translational modification that can modulate the localization and activity of target proteins. In humans, the installation of the lipid onto target proteins is catalyzed by a family of 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). DHHCs are increasingly recognized as critical players in cellular signaling events and in human disease. However, progress elucidating the functions and mechanisms of DHHC "writers" has been hampered by a lack of chemical tools to perturb their activity in live cells. Herein, we report the synthesis and characterization of cyano-myracrylamide (CMA), a broad-spectrum DHHC family inhibitor with similar potency to 2-bromopalmitate (2BP), the most commonly used DHHC inhibitor in the field. Possessing an acrylamide warhead instead of 2BP's α-halo fatty acid, CMA inhibits DHHC family proteins in cellulo while demonstrating decreased toxicity and avoiding inhibition of the S-acylation eraser enzymes, two of the major weaknesses of 2BP. Our studies show that CMA engages with DHHC family proteins in cells, inhibits protein S-acylation, and disrupts DHHC-regulated cellular events. CMA represents an improved chemical scaffold for untangling the complexities of DHHC-mediated cell signaling by protein S-acylation.


Assuntos
Acrilamidas/farmacologia , Aciltransferases/antagonistas & inibidores , Antígenos CD36/metabolismo , Inibidores Enzimáticos/farmacologia , Acrilamidas/síntese química , Acrilamidas/toxicidade , Acilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Receptores ErbB/metabolismo , Humanos , Lipoilação/efeitos dos fármacos , Camundongos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
4.
Cell Chem Biol ; 28(9): 1298-1309.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33848465

RESUMO

Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/farmacologia , Acilação/efeitos dos fármacos , Aciltransferases/metabolismo , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/química , Ácidos Graxos/química , Células HT29 , Humanos , Necroptose/efeitos dos fármacos , Células Tumorais Cultivadas
5.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33690219

RESUMO

Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosamine-biosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated O-GlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.


Assuntos
Carcinoma Hepatocelular , Quinase do Ponto de Checagem 2/metabolismo , Gluconeogênese/efeitos dos fármacos , Glucose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias Hepáticas , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Acilação/efeitos dos fármacos , Acilação/genética , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Quinase do Ponto de Checagem 2/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
6.
Pharmacol Res ; 165: 105467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515704

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilglucosamina/antagonistas & inibidores , Acetilglucosamina/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Acilação/efeitos dos fármacos , Acilação/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Glicosilação/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Anticancer Agents Med Chem ; 20(16): 1933-1942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32538734

RESUMO

BACKGROUND AND PURPOSE: O-GlcNAcylation is a significant protein posttranslational modification with O-linked ß-N-acetylglucosamine (GlcNAc) for intracellular signaling. Elevated O-GlcNAcylation contributes to cell proliferation, cell migration, cell apoptosis and signal transduction in various cancers. However, the expression level and functional role of O-GlcNAcylation in Hypopharyngeal Squamous Cell Carcinoma (HSCC) is not clearly elucidated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a master transcriptional factor that has been found to be aberrantly activated in HSCC. Here, we provide a molecular rationale between O-GlcNAcylation and Nrf2 in HSCC patients. METHODS: The protein levels of O-GlcNAcylation and Nrf2 in HSCC tissues were detected by immunohistochemistry technique and western blot analysis. Then, O-GlcNAcylation knockdown HSCC cells were applied in this study. Cell proliferation was detected by CCK8, colony-forming analysis, and cell cycle assays. Cell migration and invasion ability was evaluated by transwell assays. Cell apoptosis was measured by TUNEL analysis. RESULTS: O-GlcNAcylation was obviously up-regulated in HSCC tissues, which correlated with tumor size and lymph node metastasis. In addition, the protein level of Nrf2 was found to positively correlate with the expression of O-GlcNAcylation both in vivo and in vitro. Knockdown of O-GlcNAcylation significantly inhibited HSCC cell growth, suppressed cell migration, and promoted cell apoptosis, whereas overexpression of Nrf2 reversed these phenotypes. Mechanismly, the upregulation of O-GlcNAcylation promoted the phosphorylation of Akt, leading to the stabilization of Nrf2; this could be attenuated by inhibition of the PI3K/Akt signaling pathway. CONCLUSION: Here, we provide a molecular association between O-GlcNAcylation and Nrf2 in HSCC patients, thus providing valuable therapeutic targets for the disease.


Assuntos
Acetilglucosamina/antagonistas & inibidores , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Hipofaríngeas/tratamento farmacológico , Acetilglucosamina/metabolismo , Acilação/efeitos dos fármacos , Anticorpos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hipofaríngeas/metabolismo , Neoplasias Hipofaríngeas/patologia , Estrutura Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Cell Mol Biol Lett ; 25: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174982

RESUMO

BACKGROUND: High levels of the post-translational modification O-GlcNAcylation (O-GlcNAc) are found in multiple cancers, including bladder cancer. Autophagy, which can be induced by stress from post-translational modifications, plays a critical role in maintaining cellular homeostasis and regulating tumorigenesis. The impact of O-GlcNAcylation on autophagy in bladder cancer remains unclear. Here, we evaluate the change in autophagic activity in response to O-GlcNAcylation and explore the potential mechanisms. METHODS: O-GlcNAcylation levels in bladder cancer cells were altered through pharmacological or genetic manipulations: treating with 6-diazo-5-oxo-norleucine (DON) or thiamet-G (TG) or up- and downregulation of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA). Autophagy was determined using fluorescence microscopy and western blotting. Co-immunoprecipitation (Co-IP) assays were performed to evaluate whether the autophagy regulator AMP-activated protein kinase (AMPK) was O-GlcNAc modified. RESULTS: Cellular autophagic flux was strikingly enhanced as a result of O-GlcNAcylation suppression, whereas it decreased at high O-GlcNAcylation levels. Phosphorylation of AMPK increased after the suppression of O-GlcNAcylation. We found that O-GlcNAcylation of AMPK suppressed the activity of this regulator, thereby inhibiting ULK1 activity and autophagy. CONCLUSION: We characterized a new function of O-GlcNAcylation in the suppression of autophagy via regulation of AMPK. GRAPHICAL ABSTRACT: Blockage of O-linked GlcNAcylation induces AMPK dependent autophagy in bladder cancer cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Acilação/efeitos dos fármacos , Acilação/genética , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , N-Acetilglucosaminiltransferases/genética , Norleucina/análogos & derivados , Norleucina/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Piranos/farmacologia , RNA Interferente Pequeno , Tiazóis/farmacologia , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , beta-N-Acetil-Hexosaminidases/genética
9.
J Biol Chem ; 295(14): 4488-4497, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071081

RESUMO

The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 µm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 µm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 µm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 µm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.


Assuntos
Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Acilação/efeitos dos fármacos , Aciltransferases/metabolismo , Alcinos/química , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Células HEK293 , Humanos , Íleo/metabolismo , Ácido Oleico/química , Ácido Oleico/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Palmitatos/química , Palmitatos/farmacologia , Simportadores/genética
10.
Int J Mol Sci ; 20(24)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847420

RESUMO

An acylated flavonol glycoside, helichrysoside, at a dose of 10 mg/kg/day per os for 14 days, improved the glucose tolerance in mice without affecting the food intake, visceral fat weight, liver weight, and other plasma parameters. In this study, using hepatoblastoma-derived HepG2 cells, helichrysoside, trans-tiliroside, and kaempferol 3-O-ß-D-glucopyranoside enhanced glucose consumption from the medium, but their aglycones and p-coumaric acid did not show this activity. In addition, several acylated flavonol glycosides were synthesized to clarify the structural requirements for lipid metabolism using HepG2 cells. The results showed that helichrysoside and related analogs significantly inhibited triglyceride (TG) accumulation in these cells. The inhibition by helichrysoside was more potent than that by other acylated flavonol glycosides, related flavonol glycosides, and organic acids. As for the TG metabolism-promoting activity in high glucose-pretreated HepG2 cells, helichrysoside, related analogs, and their aglycones were found to significantly reduce the TG contents in HepG2 cells. However, the desacyl flavonol glycosides and organic acids derived from the acyl groups did not exhibit an inhibitory impact on the TG contents in HepG2 cells. These results suggest that the existence of the acyl moiety at the 6'' position in the D-glucopyranosyl part is essential for glucose and lipid metabolism-promoting activities.


Assuntos
Catecóis/farmacologia , Cromonas/farmacologia , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Acilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonóis/farmacologia , Glicosídeos/farmacologia , Células Hep G2 , Humanos , Quempferóis/farmacologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
11.
ACS Chem Biol ; 14(9): 2014-2023, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433161

RESUMO

Protein lysine fatty acylation is increasingly recognized as a prevalent and important protein post-translation modification. Recently, it has been shown that K-Ras4a, R-Ras2, and Rac1 are regulated by lysine fatty acylation. Here, we investigated whether other members of the Ras superfamily could also be regulated by lysine fatty acylation. Several small GTPases exhibit hydroxylamine resistant fatty acylation, suggesting they may also have protein lysine fatty acylation. We further characterized one of these GTPases, RalB. We show that RalB has C-terminal lysine fatty acylation, with the predominant modification site being Lys200. The lysine acylation of RalB is regulated by SIRT2, a member of the sirtuin family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylases. Lysine fatty acylated RalB exhibited enhanced plasma membrane localization and recruited its known effectors Sec5 and Exo84, members of the exocyst complex, to the plasma membrane. RalB lysine fatty acylation did not affect the proliferation or anchorage-independent growth but did affect the trans-well migration of A549 lung cancer cells. This study thus identified an additional function for protein lysine fatty acylation and the deacylase SIRT2.


Assuntos
Movimento Celular/fisiologia , Lisina/química , Sirtuína 2/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Células A549 , Acilação/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hidroxilamina/farmacologia , Mutação , Processamento de Proteína Pós-Traducional , Proteínas de Transporte Vesicular/metabolismo , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/genética
12.
ACS Chem Biol ; 14(7): 1393-1397, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31264832

RESUMO

Mammalian histone deacetylases (HDACs) are a class of enzymes that play important roles in biological pathways. Existing HDAC inhibitors target multiple HDACs without much selectivity. Inhibitors that target one particular HDAC will be useful for investigating the biological functions of HDACs and for developing better therapeutics. Here, we report the development of HDAC11-specific inhibitors using an activity-guided rational design approach. The enzymatic activity and biological function of HDAC11 have been little known, but recent reports suggest that it has efficient defatty-acylation activity and that inhibiting it could be useful for treating a variety of human diseases, including viral infection, multiple sclerosis, and metabolic diseases. Our best inhibitor, SIS17, is active in cells and inhibited the demyristoylation of a known HDAC11 substrate, serine hydroxymethyl transferase 2, without inhibiting other HDACs. The activity-guided design may also be useful for the development of isoform-specific inhibitors for other classes of enzymes.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Acilação/efeitos dos fármacos , Descoberta de Drogas , Humanos , Células MCF-7
13.
J Biol Chem ; 294(22): 8973-8990, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31010828

RESUMO

Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.


Assuntos
Ácidos Graxos/biossíntese , Interleucina-17/metabolismo , Células Th17/metabolismo , Acetil-CoA Carboxilase/metabolismo , Acilação/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Ácidos Graxos/análise , Feminino , Humanos , Interleucina-17/genética , Lipidômica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Piranos/farmacologia , Células Th17/citologia , Tiazóis/farmacologia , Ativação Transcricional/efeitos dos fármacos
14.
Arch Physiol Biochem ; 125(1): 64-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29429367

RESUMO

This study investigated the ameliorative and protective effects of long-term obestatin administration (80 nmol/kg/ intraperitoneal injection (i.p.)) on the pathogenesis of high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD) in rats. Rats (n = 8/group) were divided as control, NAFLD, NAFLD + Simvastatin, NAFLD + obestatin, NAFLD then obestatin, and obestatin then NAFLD. Obestatin co -or post-therapy significantly reduced hepatomegaly and reversed hyperlipidemia, hepatic lipid accumulation, and insulin resistance (IR). Mechanistically obestatin treatments in these rats significantly prevented the increases in final body weights and food intake. Concomitantly, it enhanced circulatory adiponectin levels and hepatic signaling as evident by elevated hepatic protein levels of adiponectin receptors (adipoRII), carnitine palmitoyltransferase-1 (CPT-1), peroxisome proliferator-activated receptor- α (PPAR-α), and phosphor-AMPK (p-AMPK). In addition, obestatin enhanced total circulatory ghrelin levels and significantly increased deacylated ghrelin to acylated ghrelin (DAG/AG) ratio. These data suggest that obestatin reverses and protects against development or progression of NAFLD directly by modulating ghrelin and adiponectin signaling or indirectly by lowering food intake.


Assuntos
Adiponectina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Acilação/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/metabolismo , Grelina/uso terapêutico , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
15.
J Biol Chem ; 293(10): 3593-3606, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29352103

RESUMO

Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.


Assuntos
Plaquetas/metabolismo , Cisteína/metabolismo , Exocitose , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Acilação/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Cisteína/química , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Humanos , Hidroxilamina/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Oxirredução , Selectina-P/metabolismo , Ácido Palmítico/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Qa-SNARE/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Substâncias Redutoras/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Trítio
16.
J Biol Chem ; 293(8): 2755-2769, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301937

RESUMO

An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7ß, CyC8ß, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8ß disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.


Assuntos
Aciltransferases/antagonistas & inibidores , Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Acilação/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/química , Antituberculosos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligantes , Viabilidade Microbiana/efeitos dos fármacos , Conformação Molecular , Mutação , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina/química
17.
Chembiochem ; 19(5): 496-504, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29235227

RESUMO

Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Histona Desacetilases/metabolismo , Lisina/metabolismo , Peptídeos/metabolismo , Espectrometria de Fluorescência/métodos , Acilação/efeitos dos fármacos , Benzamidas/farmacologia , Corantes Fluorescentes/química , Histona Desacetilases/química , Humanos , Lisina/análise , NAD/metabolismo , Naftóis/farmacologia , Peptídeos/química , Sirtuínas/antagonistas & inibidores , Sirtuínas/química , Sirtuínas/metabolismo
18.
J Biol Chem ; 292(45): 18422-18433, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939770

RESUMO

Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression.


Assuntos
Antineoplásicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Quinases da Família src/antagonistas & inibidores , Acilação/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Mutação , Ácido Mirístico/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas pp60(c-src)/química , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética , Quinases da Família src/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28784680

RESUMO

The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Sulfametoxazol/farmacologia , Acilação/efeitos dos fármacos , Adamantano/farmacologia , Aminobenzoatos/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Cerulenina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo II/genética , Células HeLa , Humanos , Triclosan/farmacologia , Células Vero
20.
Biochem Biophys Res Commun ; 492(2): 172-177, 2017 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28830815

RESUMO

Pre-transplant insulin resistance has been proved to be an important risk factor for organ transplantation, predicting increased post-transplant complications and worse survival outcomes. However, the underlying mechanism is still unclear. Cyclosporin A (CsA) is widely used as an immunosuppressant after organ transplantation, while emerging evidence has shown that CsA increases the risk of post-transplant complications. Thus, in this study, using a cellular model of palmitate-induced insulin resistance, we evaluate the effect of CsA on apoptosis in skeletal muscle C2C12 cells with palmitate-induced insulin resistance. Western blot and flow cytometric analysis showed that CsA induced apoptosis in insulin-resistant C2C12 cells. Mechanistically, a sustained increase of global protein O-GlcNAcylation was observed after CsA treatment, and suppression of protein O-GlcNAcylation with its inhibitors (alloxan or 5-oxo-6-diazo-norleucine) resulted in decreased O-GlcNAcylation levels and apoptosis. Furthermore, CsA increased mitochondrial membrane potential and intracellular ROS production in insulin-resistant C2C12 cells, and inhibition of ROS production with SS-31 suppressed CsA-induced O-GlcNAcylation. In summary, our results suggest that CsA treatment induced apoptosis in insulin-resistant C2C12 cells, partly via CsA-induced ROS production and resultant O-GlcNAcylation, indicating that O-GlcNAcylation serves as a potent therapeutical target for organ transplantation.


Assuntos
Acetilglucosamina/metabolismo , Apoptose/efeitos dos fármacos , Ciclosporina/efeitos adversos , Imunossupressores/efeitos adversos , Resistência à Insulina , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas/metabolismo , Acilação/efeitos dos fármacos , Animais , Linhagem Celular , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condicionamento Pré-Transplante/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA